Nitrogen and phosphorus cycling in the ocean

Deborah A. Bronk Department of Physical Sciences

The Redfield Ratio

C:N:P = 106: 16: 1

$$106CO_2 + 122H_2O + 16HNO_3 + H_3PO_4 \longrightarrow$$

 $(CH_2O)_{106}(NH_3)_{16}(H_3PO_4)$

detritus vs. phyto vs. bacteria?

Outline:

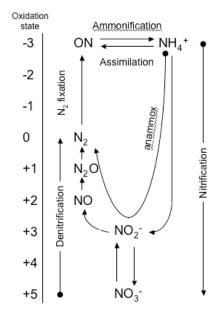
- 1. The Redfield ratio
- 2. Liebig's Law of the Minimum
- 3. The nitrogen cycle
- 4. The phosphorus cycle
- 5. New & regenerated production

Liebig's Law of the Minimum (1840) - the resource in smallest supply relative to what the organism needs is the limiting factor.

co-limitation - biochemical or community Ex. biochemical - P & Zn limitation Ex. community - Si and diatoms

A) Diatom Growth Limitation

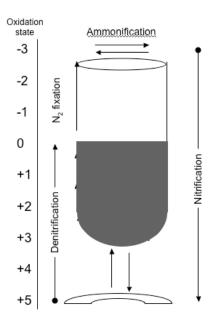
Factor limiting growth rates during summer


■Nitrogen ■Iron ■Phosphorus ■Silicon
■Light ■Temperature ■Replete

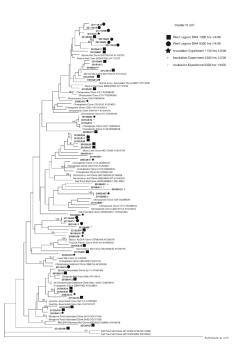
B) Small Phytoplankton Growth Limitation

C) Diazotroph Growth Limitation

Moore et al. 2004 GBC



Love et al. In press


Nitrogen Revolution mid-1990s-present

- Nitrification
- Denitrification/anammox
- N₂ fixation
- Anthropogenic N inputs

A plea and a warning!

Hewson et al. 2007 ISME

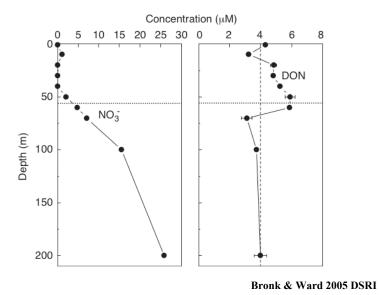
CARBON hydrocarbons monosaccharides fatty acids vit D hexose-P nucleotides HOSPHORU nucleic acid triose-P amino sugars TROGEN chlorophyll a teichoic acid PEP vit B₁ and B₂ peptidoglycan phospholipids humic/fulvic acids polysaccharides

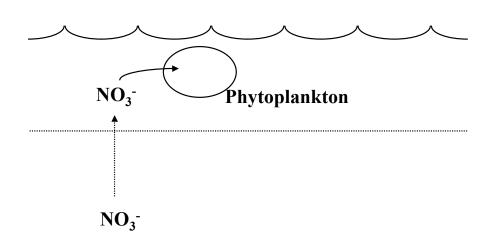
Karl & Björkman 2002 DOM book

Types of nitrogen

Inorganic

nitrogen gas (N₂) ammonium (NH₄⁺) nitrate (NO₃⁻) nitrite (NO₂⁻)

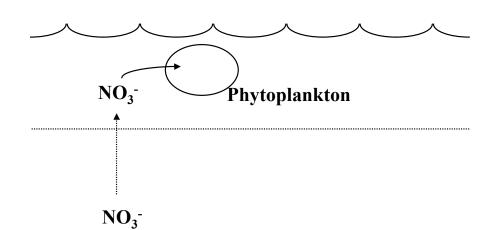

Organic


urea
amino acids
proteins
humic substances
more later....

TDN - DIN = DON

$$TDN - (NO_3^- + NO_2^- + NH_4^+)$$

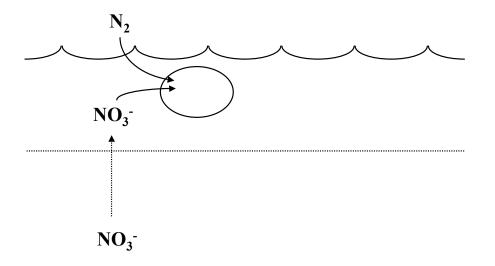
Southern California Bight

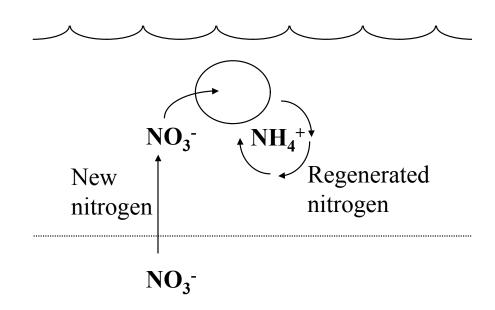


The Ocean

light - ~no N

no light - lots N

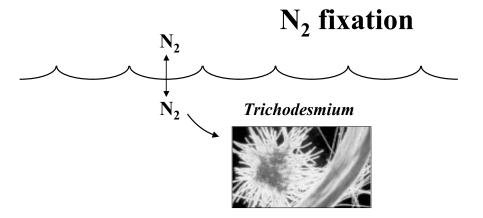


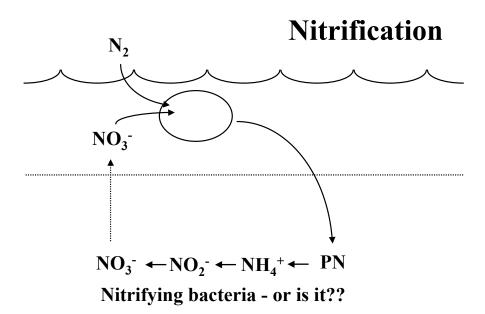

UPTAKE OF NEW AND REGENERATED FORMS OF NITROGEN IN PRIMARY PRODUCTIVITY¹

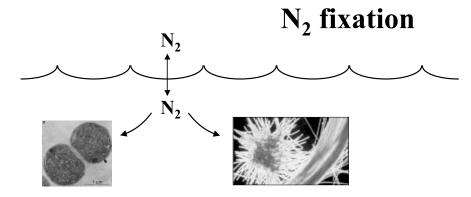
R. C. Dugdale and J. J. Goering
Institute of Marine Science, University of Alaska, College 99735

Production can be defined as new or regenerated based on the source of the nitrogen that fueled it.

Dugdale & Goering 1967 L&O




Nitrogen fixation


$$N_2 + 8H^+ + 8e^- + 16 \text{ MgATP} \rightarrow 2 \text{ NH}_3 + H_2 + 16 \text{ MgADP} + 16P_i$$

Nitrogenase

- "Fixing" broken N₂
- Energetically very expensive
- Nitrogenase is irreversibly inactivated by oxygen
- Most N₂ fixers form heterocysts

- · Colonial, non-heterocystous diazotroph
- Two morphological forms
- Found in tropical and subtropical waters
- Traditionally considered the dominant N fixer in the ocean

Zehr et al. 2001 Nature Unicellular cyanobacteria that expressed nitrogenase at HOT

Montoya et al. 2004 Nature
Rates of N fixation by the single cell forms can equal or exceed rates by *Trichodemsium*

Nitrification

Ammonium oxidizers:
very slow growing
sensitive to light

Nitrite oxidizers:
faster growing
more sensitive to light

- Nitrifiers are chemolithoautotrophs.
- Maximum rates occur near the base of the euphotic zone.

Karner et al. 2001 Nature

39% of the picoplankton in the mesopelagic at HOT are archaea.

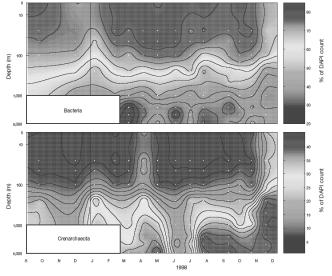
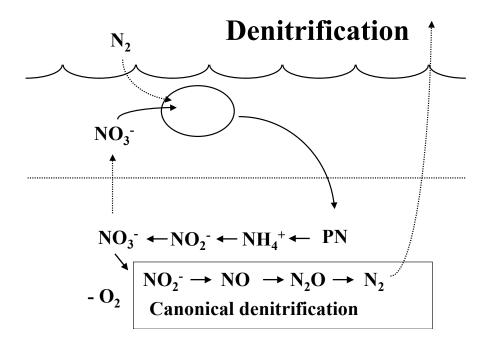
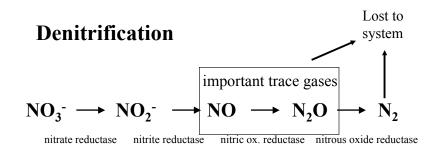
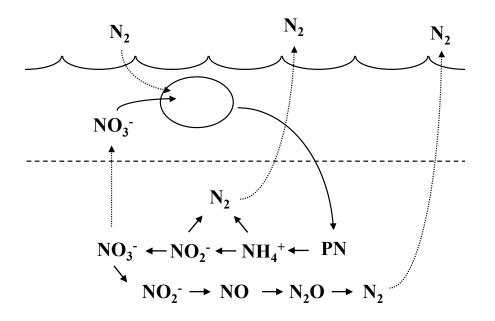


Figure 1 Contour plots of relative abundances with depth of bacteria and pelagic crenarchaeota during a 1-yr sampling effort at the Hawarii Ocean Time-series station, ALOHA, in the North Pacific subtropical gyre. White dots indicate dates and depths where samples were collected. Contour lines are percentages of bacteria and pelagic. crenarchaeota as compared with total microbial abundance at each depth. Total cell abundance was assessed using the DAPI nucleic acid stain. Bacteria and archaea were enumerated using whole-cell rRNA targeted fluorescent in situ hybridization with fluorescein-labelled polynucleotide probes. See also Supplementary Information.


Könneke et al. 2005 Nature


Isolated a marine crenarchaeota that can grow by aerobically oxidizing NH₄⁺ to NO₂⁻.

?


Ingalls et al. 2006 PNAS

An isotopic mass balance of radiocarbon signatures of archaeal membrane lipids indicates that 83% of their carbon is obtained autotrophically at depth.

- N is used as an electron acceptor, not as a N source
- Lots of organisms can reduce NO₃-
- Fewer can reduce NO₂-, and nitrite reductase is very labile
- All the enzymes are induced by anoxia
- NO is very labile and does not accumulate

ANAMMOX

ANaerobic AMMonium OXidation

$$NO_2^- + NH_4^+ \longrightarrow N_2$$

- First described in a wastewater treatment plant in the Netherlands in 1995.
- Oxygen inhibition is reversible.

Canonical denitrification? OR Anammox??

$$NO_2^- + NH_4^+ \longrightarrow N_2$$

obligate anaerobic autotrophs

$$NO_3^- \longrightarrow NO_2^- \longrightarrow NO \longrightarrow N_2O \longrightarrow N_2$$

facultative anaerobic heterotrophs

What's the best way to make a living in a given place?

Reaction En		nergy yield (kcal)	
Aerobic respiration		686	
Denitrification		545	$(-O_2)$
Nitrification	NH ₄ ⁺ oxidation	66	
	NO ₂ - oxidation	17	
N ₂ fixation		-147	

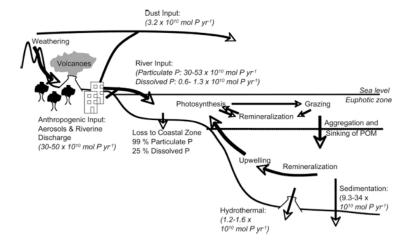
REACTION		(KILOCALORIES)	
DENITRIFICATION			
$1 C_6H_{12}O_6 + 6KNO_3 \longrightarrow 6CO_2$	+ 3H ₂ O + 6KOH + 3N ₂ O	545	
GLUCOSE POTASSIUM NITRATE			
2 $5C_6H_{12}O_6 + 24KNO_3 \longrightarrow 30CO_2 + 18H_20 + 24KOH + 12N_2$ NITROGEN		570 (PER MOLE OF GLUCOSE)	
3 5S + 6KNO ₂ + 2CaCO ₂ >	$3K_2SO_4 + 2CaSO_4 + 2CO_2 + 3N_2$	132 (PER MOLE	
SULFUR P	OTASSIUM CALCIUM ULFATE SULFATE	OF SULFUR)	
RESPIRATION			
$4 C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6CO_$	686		
CARBON	N WATER		
AMMONIFICATION		×	
5 CH₂NH₂COOH + 1 ½O₂ →	2CO ₂ + H ₂ O + NH ₃	176	
GLYCINE OXYGEN	AMMONIA		
NITRIFICATION			
6 NH ₃ + 1½O ₂ → HNO ₂ + H	I ₂ O	66	
NITROUS ACID			
7 $KNO_2 + \frac{1}{2}O_2 \longrightarrow KNO_3$		17.5	
POTASSIUM NITRITE			
NITROGEN FIXATION			
8 $N_2 \longrightarrow 2N$ "ACTIVATION	N" OF NITROGEN	- 160	
9 2N + 3H ₂ → 2NH ₃	17 No. 10 No.	12.8	

The Redfield Ratio

C:N:P = 106: 16: 1

$$106CO_2 + 122H_2O + 16HNO_3 + H_3PO_4 \longrightarrow$$

 $(CH_2O)_{106}(NH_3)_{16}(H_3PO_4)$


Table 1.3 Present-day (ca 1990) Global marine nitrogen budgets of Codispoti *et al.* (2001), Gruber (2004), and Galloway *et al.* (2004)

Process	Codispoti et al.a	Galloway et al.a,b	Gruber ^a
	2001	2004	2004
	Tg N year ⁻¹	Tg N year ⁻¹	Tg N year ⁻¹
	Sources		
Pelagic N ₂ fixation	117	106	120 ± 50
Benthic N ₂ fixation	15	15	15 ± 10
River input (DON)	34	18 ^c	35 ± 10
River input (PON)	42	30^{c}	45 ± 10
Atmospheric deposition	86	33	50 ± 20
Total sources	294	202	265 € 55
	Sinks		
Organic N export	1		1
Benthic denitrification	300	206	180 ± 50
Water column denitrification	150	116	65 ± 20
Sediment Burial	25	16	25 ± 10
N ₂ O loss to atmosphere	6	4	4 ± 2
Total sinks	482	342	275 € 55

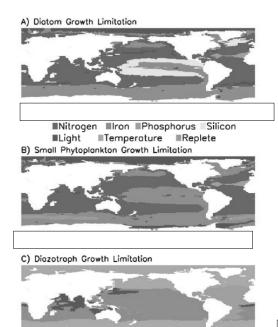
^a See the original publications for details, e.g., Galloway et al. (2004), and Codispoti et al. (2001).

Gruber In press N in the Marine Env.

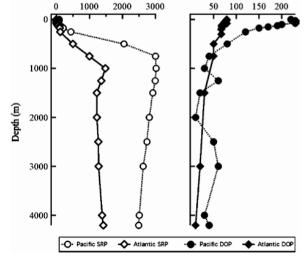
Big Picture Phosphorus Cycle

Paytan & McLaughlin 2007 Chem. Reviews

^b Listed are the central values reported by Galloway et al. (2004) (see Table 1.1 and Fig. 1.1 of their publication).


^c Galloway et al. (2004) lists only the total river flux. I assumed that about two thirds of the total is PON, and one third is DON.

Phosphorus


Dissolved inorganic phosphorus (DIP) Orthophosphate

Polyphosphates

Solubable reactive phosphorus (SRP) - P that reacts with a molybdate solution. Includes primarily HPO_4^{2-} (~87%), PO_4^{3-} , and some reactive organic species.

Factor limiting growth rates during summer

SRP (nmol L.1)

Paytan & McLaughlin 2007 Chem. Reviews

DOP (nmol L⁻¹)

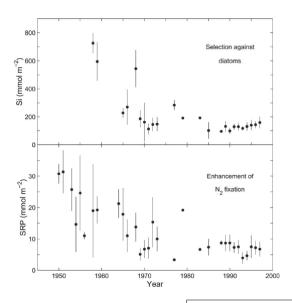
Table 1.3 Present-day (ca 1990) Global marine nitrogen budgets of Codispoti *et al.* (2001), Gruber (2004), and Galloway *et al.* (2004)

Process	Codispoti et al.a	Galloway et al.a,b	Gruber ^a
	2001	2004	2004
	Tg N year-1	Tg N year-1	Tg N year-1
	Sources		
Pelagic N ₂ fixation	117	106	120 ± 50
Benthic N ₂ fixation	15	15	15 ± 10
River input (DON)	34	18 ^c	35 ± 10
River input (PON)	42	30^{c}	45 ± 10
Atmospheric deposition	86	33	50 ± 20
Total sources	294	202	265 ± 55
	Sinks		
Organic N export	1		1
Benthic denitrification	300	206	180 ± 50
Water column denitrification	150	116	$\sqrt{65 \pm 20}$
Sediment Burial	25	16	25 ± 10
N ₂ O loss to atmosphere	6	4	4 ± 2
Total sinks	482	342	275 ± 55

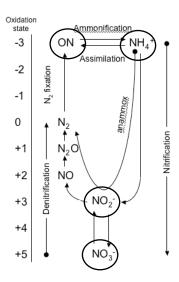
^a See the original publications for details, e.g., Galloway et al. (2004), and Codispoti et al. (2001).

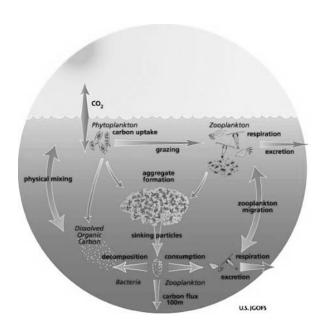
Moore et al. 2004 GBC

^b Listed are the central values reported by Galloway et al. (2004) (see Table 1.1 and Fig. 1.1 of their publication).


^c Galloway et al. (2004) lists only the total river flux. I assumed that about two thirds of the total is PON, and one third is PON

If nitrogen is queen, phosphorus is king!


Flip Froelich

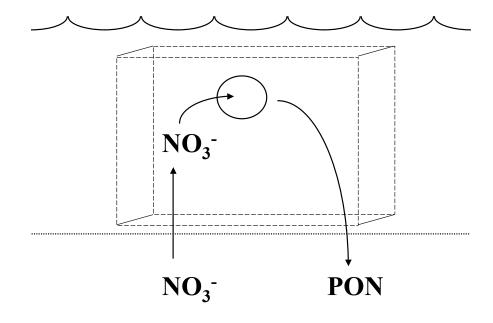

Uptake and regeneration in the surface ocean

The domain shift hypothesis

Karl et al. 2001 DSRII

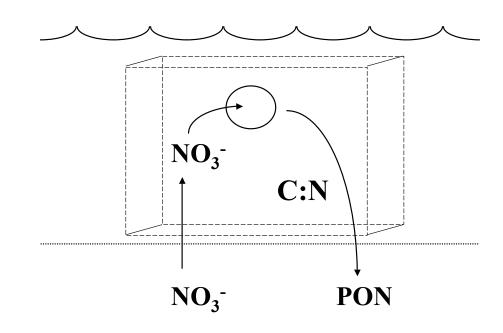
New nitrogen Regenerated nitrogen NO₃-

Particulate organic matter flux and planktonic new production in the deep ocean

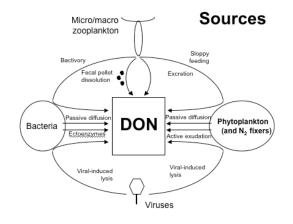

Richard W. Eppley

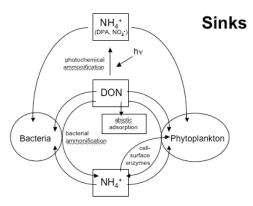
Institute of Marine Resources, A-018, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093

Bruce J. Peterson


Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543

New production over appropriate spatial and temporal scales equals export flux.


Eppley & Peterson 1979 Nature


f-ratio =
$$\frac{NO_3^- \text{ uptake}}{NH_4^+ + NO_3^- \text{ uptake}}$$

NO₃POC

Tomorrow.....

